The herpes simplex virus 1 UL 17 gene is required for localization of capsids and major and minor capsid proteins to intranuclear sites where viral DNA is cleaved and packaged.
نویسندگان
چکیده
In nuclei of cells infected with herpes simplex virus (HSV), synthesized viral DNA accumulates as concatamers that are cleaved into genomic lengths and inserted into preformed capsids. Whereas newly replicated DNA and enzymes required for DNA synthesis accumulate in sites of infected cell nuclei termed replication compartments, the intranuclear site of DNA cleavage and packaging is currently controversial. DNA packaging requires the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes in addition to the major capsid proteins. Using confocal immunofluorescence microscopy, it was observed that in > 95% of HEp-2 cells fixed at late times after infection with wild-type HSV-1, capsids, major capsid proteins ICP5 and ICP35, and the UL6-encoded minor capsid protein localized in DNA replication compartments. These data support the hypothesis that capsid assembly and DNA cleavage/packaging normally occur in HEp-2 cell replication compartments. In contrast, cells infected with a viral mutant lacking functional UL17 contained antigenically dense nuclear aggregates that stained with ICP35, ICP5, and capsid specific antibodies. Cells infected with the UL17 mutant virus also displayed UL6-specific fluorescence in a diffuse pattern at the nuclear periphery in regions not containing ICP35 and ICP5. Displacement of ICP35 from replication compartments was not observed in cells infected with cleavage/packaging mutants lacking UL28 and UL33. We conclude that the UL17 gene is required for correct targeting of capsids and major and minor capsid proteins to the DNA replication compartment of HEp-2 cells and deduce that this targeting reflects one functional role of UL17 in viral DNA cleavage and packaging.
منابع مشابه
The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids.
Homologs of the UL25 gene product of herpes simplex virus (HSV) have been identified in all three subfamilies of the Herpesviridae. However, their exact function during viral replication is not yet known. Whereas earlier studies indicated that the UL25 protein of HSV-1 is not required for cleavage of newly replicated viral DNA but is necessary for stable encapsidation (A. R. McNab, P. Desai, S....
متن کاملAssemblons: nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1.
In cells infected with herpes simplex virus 1 (HSV-1), the viral proteins ICP5 (infected-cell protein 5) and VP19c (the product of UL38) are associated with mature capsids, whereas the same proteins, along with ICP35, are components of immature capsids. Here we report that ICP35, ICP5, and UL38 (VP19c) coalesce at late times postinfection and form antigenically dense structures located at the p...
متن کاملPhysical and functional interactions between the herpes simplex virus UL15 and UL28 DNA cleavage and packaging proteins.
Herpes simplex virus (HSV) DNA is cleaved from concatemers and packaged into capsids in infected cell nuclei. This process requires seven viral proteins, including UL15 and UL28. UL15 expressed alone displays a nuclear localization, while UL28 remains cytoplasmic. Coexpression with UL15 enables UL28 to enter nuclei, suggesting an interaction between the two proteins. Additionally, UL28 copurifi...
متن کاملThe Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain
Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To deciphe...
متن کاملUncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression.
Incoming capsids of herpes simplex virus type 1 (HSV-1) enter the cytosol by fusion of the viral envelopes with host cell membranes and use microtubules and microtubule motors for transport to the nucleus. Upon docking to the nuclear pores, capsids release their genomes into the nucleoplasm. Progeny genomes are replicated in the nucleoplasm and subsequently packaged into newly assembled capsids...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Virology
دوره 252 1 شماره
صفحات -
تاریخ انتشار 1998